

Transforming Organic Waste into Forests

**Jonilton Paschoal¹, Alciene Santos², Norberto Noronha³, Vicente Sousa⁴
and Leda Macedo⁵**

1. Environment Manager
2. Environment Coordinator
4. Environmental Engineer
5. Environmental Analyst

Hydro Bauxite & Alumina, Paragominas, Brazil

3. Researcher

Universidade Federal Rural da Amazonia, Belém, Brazil

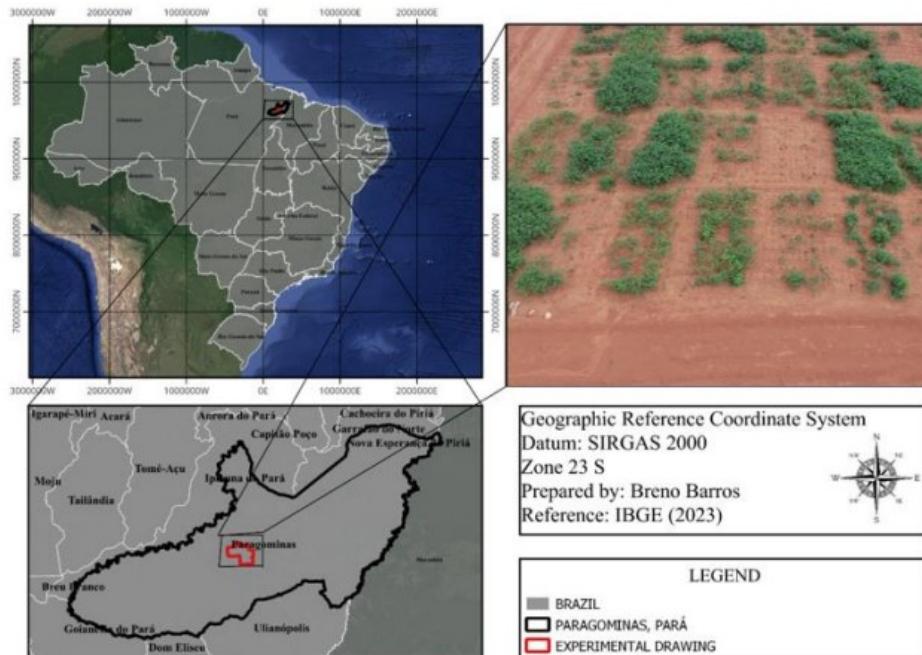
Corresponding author: jonilton.paschoal@hydro.com

<https://doi.org/10.71659/icsoba2025-bx019>

Abstract

DOWNLOAD
FULL PAPER

Reforestation and waste management are critical environmental challenges in mining, especially when topsoil is unavailable for reclamation, and incineration of organic waste proves to be an unsustainable option. This study aimed at improving the conditions of barren soils through the application of processed organic waste, creating a technosol that enhances the reclamation of mined areas. The experiment involved processed organic waste applied at three dosages (10, 20, and 40 t/ha) and a control, with five replications in a randomized block design. Guandu beans (*Cajanus cajan*) were used as an indicator plant. Physical properties (density and total porosity) and chemical properties (organic carbon) were evaluated in the 0–5, 5–10, 10–20, and 20–40 cm soil layers, as well as dry biomass and plant height at 6 and 14 months. The results showed that doses of 20 and 40 t/ha of organic waste significantly increased plant height and dry biomass compared to the control. Statistically, significant differences in organic carbon were observed in the 0–5 cm layer (*p*-value < 0.05). Although density and total porosity did not respond significantly to the doses of organic matter, treatments with 20 and 40 t/ha of organic waste exhibited better performance in soil recovery. Incorporating 40 t/ha of organic waste into sterile soil had a positive effect on organic carbon. These findings suggest that the application of organic waste, particularly at doses of 20 and 40 t/ha, is promising for increasing soil carbon content and dry biomass production. Furthermore, since 2015, mining has avoided the incineration of over 1165 tonnes of waste, converting it into 303.75 t of soil-enriching organic material, contributing to sustainability, reducing CO₂ emissions, and generating significant cost savings.


Keywords: Rehabilitation of mined areas, Carbon emission reduction, Soil carbon, Organic residue, Technosol.

1. Introduction

Hydro Bauxite & Alumina is a leading company in aluminium and renewable energy, committed to a sustainable future. Its goal is to create viable societies by developing industries that matter to people and society. [1], Hydro Bauxite & Alumina has transformed natural resources into innovative solutions and businesses, creating a safe workplace for 33 000 employees across more than 140 operations in 40 countries.

In Brazil, Hydro operates across the entire aluminium value chain, employing nearly 7000 people. From bauxite extraction and renewable energy generation to alumina refining, aluminium production and extrusion, Hydro supplies essential materials that drive innovation and sustainability in key sectors such as construction, automotive, and packaging.

Paragominas is an important part of Hydro Bauxite & Alumina's strategy as a global supplier of innovative and sustainable aluminium solutions. The mine in Paragominas is responsible for bauxite extraction, located about 70 km from the municipality center, in northeastern Pará, at the Miltônia 3 Plateau [1].

Figure 1. Location of Paragominas Mining – Hydro, according to IBGE (2023).

Hydro Bauxite & Alumina brings an innovative initiative for mined land rehabilitation: Technosol, a project that transforms organic waste, that would otherwise be incinerated, into nutrient-rich material for sterile soils (overburden), called "organic cake" [1].

The Paragominas operation began in 2007 and currently moves about 16 Mtpa, with an annual production of 11.4 Mt of bauxite. The material is transported through a 244-kilometer pipeline to Barcarena — the first in the world designed for this purpose. By 2024, the company had promoted the environmental rehabilitation of 3467 ha [1].

Currently, Hydro Bauxite & Alumina uses three techniques for mined land rehabilitation: (1) Traditional Planting, involving seed collection, seedling production, and planting; (2) Induced Natural Regeneration, involving the transport and spreading of organic soil in the area to be rehabilitated; and (3) Nucleation, involving the transport of organic soil and forest residues (branches and roots) to the areas to be rehabilitated. All these techniques rely on the use of organic soil, a natural and limited resource.

This more favourable environment contributed to greater plant species growth, as it promoted suitable conditions for aeration, nutrient availability, and root system development [26].

However, the recovery of chemical and physical properties at greater depths in technosols may require more time due to the absence of organic sources and ongoing pedogenetic processes.

It can be highlighted that the formation of technosols from residual soils of bauxite mining, combined with organic matter sources derived from the operation's own waste, such as those generated in the dining facilities, proved to be an effective and efficient strategy to improve the growth conditions of *Cajanus cajan* and restore the biome of mined areas. This technique, based on the concepts of ecological engineering, represents a viable alternative from both economic and environmental perspectives for the rehabilitation of areas altered by mining, where residual soils typically exhibit low physico-chemical quality.

Furthermore, the use of this approach contributes to the reduction of CO₂ emissions, since the organic waste used is no longer incinerated. The success of this strategy led Hydro Bauxite & Alumina to expand the production of organic cake to two additional units in Brazil.

Another relevant point in the bauxite supply chain is that other major mining companies in the sector have adopted technologies similar to Tailings Dry Backfill, aiming to reduce the construction of new dams. Since mining companies plan in advance, they are likely to face challenges with areas no longer required for dam installation and lacking topsoil to initiate environmental recovery. In this context, the use of technosols emerges as an effective alternative to address these challenges.

Among the tested doses, 20 t/ha of dehydrated organic matter proved to be the most effective and efficient option. It provided significant gains in plant height and dry biomass yield, similar to the higher dose of 40 t/ha, but with half the input cost. This makes R20 the recommended dose for large-scale application in post-mining soil rehabilitation projects, offering the best balance between biological performance and economic viability. Unlike standardized industrial inputs, there is no “supermarket” where Technosol can be purchased – it must be carefully created in the field. Identifying the appropriate proportion is essential to ensure sustainability, optimize the use of limited organic material, and maximize the impact of land reclamation efforts. This pursuit of efficiency recalls Greco-Roman architecture, when massive columns were built due to a lack of knowledge about material resistance. In similar fashion, this study helps “calculate the column’s diameter” – that is, to technically calibrate the amount of organic amendment required to support vegetation growth and ecological recovery. Knowing how much to apply is as crucial as the application itself. Like spreading butter on bread, the challenge is to apply the same amount more evenly over a larger area. This work provides concrete data to help the mining and aluminium industries apply that principle with technical precision.

7. References

1. Norsk Hydro, Pioneer solution can eliminate use of permanent bauxite tailing dams, 2021. <https://www.hydro.com/en/global/about-hydro/stories-by-hydro/novel-bauxite-tailings-concept-a-success-in-full-operation/>
2. Brazilian Institute of Geography and Statistics (IBGE), 2022 *Population Census: Preliminary Results*, 2023. <https://www.ibge.gov.br/estatisticas/sociais/trabalho/22827-censo-demografico-2022.html>
3. E.J.B. Bastos and P.V. Azevedo, Monthly and annual variation of relative humidity in the Uruçuí Preto River basin (PI), *Proceedings of the 18th Brazilian Congress of Meteorology*, Recife, 2014.

4. J.L. Reátegui-Betancourt, J.N.M. Silva, and F.G. Higuchi, Change in a terra firme dense ombrophilous forest after logging in the Brazilian Amazon (2006–2016), *Revista Árvore*, Vol. 47, e20230010, 2023. <https://doi.org/10.1590/1806-90882023000100010>
5. Brazilian Agricultural Research Corporation (EMBRAPA), Soil classification, 2021. Available: <https://www.embrapa.br/solos/sibcs>
6. EMBRAPA, *Manual of soil analysis methods*, 3rd ed., Brasília, DF: Embrapa, 2017.
7. P.C. Teixeira, G.K. Donagemma, A. Fontana, and W.G. Teixeira (eds.), *Manual of soil analysis methods*, 3rd ed., rev. and expanded, Brasília, DF: Embrapa, 2017.
8. C.E.G.R. Schaefer et al., Chemical attributes related to acidity and cation exchange capacity of soils in Rio Grande do Sul with different weathering degrees, *Acta Iguazu*, Vol. 8, no. 2, 198–215, 2020.
9. J.F. Roset et al., Conditioning and nutritional effects of a soil remineralizer obtained from mining waste, *Revista Brasileira de Ciência do Solo*, Vol. 43, e20170321, 2019.
10. G.F. de Oliveira et al., Soil carbon fractions in response to mineral and organic fertilizer types and rates, *Revista Brasileira de Ciência do Solo*, Vol. 47, e0220132, 2023. <https://doi.org/10.36783/18069657rbcs20220132>
11. R.F. Guareschi et al., Organic carbon dynamics in soils under different agricultural management systems, *Revista Brasileira de Ciência do Solo*, Vol. 42, 2018.
12. R.F. Novais et al., Soil fertility, Viçosa, MG: Brazilian Society of Soil Science, 2011.
13. N.C. Brady and R.R. Weil, The nature and properties of soils, 14th ed., Upper Saddle River, NJ: Pearson Education, 2013.
14. D.M.G. Souza, Soil organic matter and its effects on soil quality and agricultural productivity, M.Sc. thesis, Federal University of Viçosa, Viçosa, MG, 2018.
15. M.A.C. Silva, L.R.F. Alleoni, and G.A. Ballarin, Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil, *Journal of the Science of Food and Agriculture*, Vol. 98, no. 9, 3595–3602, 2018. <https://doi.org/10.1002/jsfa.8845>
16. F. Bastida et al., Soil microbial diversity and soil functions, *Soil Biology and Biochemistry*, Vol. 111, 1–12, 2017.
17. J.F. de Azevedo, Evaluation of plant growth in soils with different organic matter contents, *Revista Brasileira de Ciência do Solo*, Vol. 44, e20180347, 2020.
18. G.V. Miranda, L.V. Souza, and J.A. Oliveira, Performance of pigeon pea cultivars (*Cajanus cajan* (L.) Millsp.) under different spacings, *Informe Agropecuário*, Vol. 13, no. 148, 31–35, 1989.
19. A.C.R. Cavalcante, E.F.F. Silva, and M.C. Santos, Biomass productivity and nutrient accumulation in pigeon pea grown in arable soils, *Revista Brasileira de Ciência do Solo*, Vol. 36, no. 5, 1507–1515, 2012.
20. A.B. Fonseca et al., Biomass production and accumulation in agricultural systems after 14 months of management, *Revista Brasileira de Ciência do Solo*, Vol. 46, e021234, 2022.
21. Intergovernmental Panel on Climate Change (IPCC), 2006 IPCC guidelines for national greenhouse gas inventories, Vol. 2: Energy, Hayama, Japan: IGES, 2006.
22. J.T. Houghton, Greenhouse gas inventory guidelines, National Greenhouse Gas Inventories Programme, 2001.
23. P. Friedlingstein et al., Global carbon budget 2023, *Earth System Science Data*, Vol. 15, no. 11, 4573–4622, 2023.
24. M.J.P. Sullivan et al., Long-term thermal sensitivity of Earth's tropical forests, *Science*, Vol. 368, no. 6493, 869–874, 2020.
25. D.L.P. da Costa et al., Soil quality indicators in recovery of degraded areas: A review, *Journal of Agricultural Science*, Vol. 12, no. 3, 191–204, 2020.
26. K.E. Giller et al., Soil organic matter, biological nitrogen fixation, and the resilience of tropical soils, *Soil*, Vol. 7, no. 1, 1–17, 2021.